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RECEPTIVITY OF THE BOUNTYARY LAYER ON A FLAT PLATE
WITH A BLUNTED LEADING EDGE TO STEADY NONUNIFORMITY
OF THE FREE STREAM

M. V. Ustinov UDC 532.517

The flow past a flat plate with a blunted leading edge by a flow of a viscous incompressible
fluid with o small spanwise-periodic, steady nonuniformity of the velocity profile is considered.
Such a flow simulates the interaction of one type of vorter disturbances of a turbulent external
flow with the boundary layer. The solution obtained predicts generation of strong disturbances
in the boundary layer. which are simiiinr to the streaky structure observed in the case of high
free-streamn turbulence. It is shown thnat the boundary-layer flow on blunted bodies is more
sensitive to vortex disturbances than on a plate with a sharp leading edge.

Introduction. In the case of a high level of free-stream turbulence (0.1% < ¢ < 5%). the laminar-
turbulent transition occurs without formation of the Tollmien-Schlichting waves [1]. Instead of them. the
growth of low-frequency perturbations of velocity is observed. Flow visualization shows that these perturba-
tions are narrow streaks extended in the streamwise direction [2]. It is assumed that these streaky structures
appear as a result + penetration of vortices from the external flow into the boundary laver and their sub-
sequent amplification in it. Therefore, the solution of the problem of receptivity of the boundary laver to
vortex disturbances is an important component in developing the theory of the laminar-turbulent transition
in the case of an elevated level of free-stream turbulence.

This problem has been solved only for the particular case of interaction of streamwise vortices with
the boundary layer on a flat plate {3. 4]. This is the simplest case, since the free-stream vorticity field is not
distorted by the How near the leading edge. However, such a deformation involves additional amplification
of perturbations due to the expansion of vortex filaments [5]. The greatest amplification is experienced
by p¢ - bations whose vortex lines intersect the leading edge. Hence, these perturbations (and not the
streamwise vortices) should generate the streaky structure most effectively. It is shown in [5] that vorticity
perpendicular to the leading edge (or nonuniformity of the velocity profile in the spanwise directiou) can
even lead to a local separation of the boundary layer. The analysis [5] was made for large-scale disturbances
of small but finite amplitude. Under the assumptions accepted, the development of disturbances is actually
inviscid, and the governing influence is exerted by nonlinear effects. However, it follows from the experimental
results of Westin et al. [6] that the transverse size of the streaky structure is small, and viscosity playvs a
significant role in the development of this structure. In addition, the amplitude of perturbations observed in
[6] is small for manifestation of strong nonlinear effects. In the present work, the problem of interaction of a
nonuniform flow with the boundary laver is solved under the following assumptions: the characteristic size of
disturbances is assumed to be of the order of the boundarv-layer thickness and the evolution of disturbances
is linear in terms of their amplitude.
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1. Basic Assumptions. We consider a viscous incompressible fluid flow past a flat plate with a
blunted leading edge. The characteristic size of the leading-edge bluntness is denoted by ¥'. (Hereinafter
the dimensional quantities are primed, and the dimensionless quantities are not.) To describe the flow, we
introduce a Cartesian coordinate system whose axes O, Oy, and Oz are directed along the flow, parallel to
the leading edge, and normal to the plate surface. The origin is located in such a way that the plane zOy
coincides with the upper surface of the plate, and the leading edge corresponds to 2/ = 0 (Fig. 1). The free
stream is assumed to be weakly nonuniform in the spanwise direction. The streamwise component of velocity
«' in the free stream is given by

W =ul (1+ce7F cos(2my /X)) (L.1)
where u is the free-stream velocity, X' is the period of nonuniformity, ¢ is the small parameter equal to
the amplitude of nonuniformity for 2/ = 0, the parameter o’ = 4720//(u/_X'?) describes the damping of the
nonuniformity due to the action of viscosity, and »/ is the kinematic viscosity. The transverse (v/) and vertical
(«') components of the free-stream velocity are equal to zero. In addition, the Reynolds number based on the
period of nonuniformity Re = uy X' /1 is assumed to be rather large. Then the expression for the free-stream
velocity (1.1) is the solution of the Navier-Stokes equations with accuracy to small quantities of order </Re.
To simplify the problem. we assume that the period of nonuniformity )\’ is small as compared to the bluntness
radius ¥'. In contrast to [5], we confine ourselves to solving the linear (in terms of ¢) problem on a weakly
nonuniform flow past a flat plate.

The velocity components and the pressure p’ are represented as

W = ul [Uy(2.2) + su(a!, 2') cos 2my' [N)]. 0 = ul[sv(a’, ) sin 27y’ /),

w' = ul [Wy(2',2) + cw(a’ . Z) cos 2my/ /N)], ¥ = puZ[Po(a’. 2)) + ep(a’, 2') cos (2my/ /X)),
where p’ is the density; the dimensionless velocity components Uy, and 117, and the pressure P, correspond to a
uniform flow past a flat plate, whereas u, v, w, and p correspond to perturbations generated by nonuniformity.
The evolution of perturbations is described by the Navier -Stokes equations linearized relative to the main
flow with no-slip boundary conditions at the plate surface. The free-stream boundary conditions follow from
(1.1): u — ™% and v, w — 0 as 2’ — —o0.

2. Solution at the Initial Section (/) <« Re). We seek the solution of the problem by the
method of matching of asymptotic solutions. The flow field is divided into two regions shown schematically
in Fig. 1. Region I is the vicinity of the leading edge with the characteristic size ¥ (2’ &~ ¥ and 2z’ = ¥'). The
flow in this region is inviscid outside a thin boundary layer and is described by linearized Euler equations
with no-slip conditions on the wall. Because of the small size of region I, we may ignore the lengthwise
damping of nonuniformity and consider the free-stream boundary conditions in the form v — 1 and v, w — 0
as ' /b — —oo.

The problem in region I in a similar formulation was solved in [5]. In what follows, we need only the
asymptotic behavior of this solution near the wall and at a large distance downstream of the leading edge:
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The constant a = 1 in the expression for v depends on the shape of leading-edge bluntness.

Viscous terms become significant in region II of length 2/ &~ NRe. The vertical size of this region

z" & X is determined by the distance from the wall at which the displacing action of the boundary layver on
velocity perturbations is manifested. In region II, we introduce the dimensionless coordinates X = z//(\'Re)
and Z = z//N. For X « 1, we can identify two subregions (Fig. 1): subregion I’ (boundary layver near the
wall in which Z ~ VX and ' = \/v2'/ul, and the flow is viscous) and subregion II” (inviscid subregion in
which Z > VX and 2z’ & X). The boundary conditions for X = 0 in inviscid subregion II” are obtained by
matching with the asymptotic solution for 2/ — oc in the vicinity of the leading edge:

u(0.2) =1, »(0,z)=A, w(0.2) = -27AZ. (2.1)

Here A = (270 /(Na)) In(b'/N) > 1. We note that it was assumed that /)’ > 1 in deriving the condition
for v. The boundary conditions for X = 0 in the boundary layer (subregion II') should be found from the
solution of the boundary-layer problem in region I. However, a certain solution will be found there, which
agrees with the boundary conditions in subregion II” for X — 0. This approach is justified if we assume that
the perturbations introduced into the boundary layer in the vicinity of the leading edge decay at a distance
of order ¥ from it.

Because of the linearitv. the solution of the problem for velocity perturbations in region II may be
represented as a sum of the solutions of two problems: (1) with nonzero conditions for « and zero conditions
for v and w for X = 0; (2) with zero conditions for « and nonzero conditions for the remaining ¢: .ponents
of velocity. The solution of the first problem describes the decay of the initial nonuniformity of the velocity
profile due to viscous dissipation. The value of velocity perturbatious remains of the order of unity for all
X. The solution of the second problem, as will be shown below, describes the increase in the streamwise
component of velocity up to a value of order Re for X = Re. For large X. the total perturbations are
determined by solving the latter probletn with nonzero conditions for v and w. This problem is considered
below. Its solution in region II is sought in the form

u=ARelU(X.Z). v=AV(X.Z), w=AW(X.Z). p=(A/Re)P(X,2), (2.2)
where the functions U, V., W, and P are universal, i.e., independent of the shape of the leading edge, Re, and

other parameters. Substituting these expressions into the linearized Navier-Stokes equations and rejecting
2 . .
the terms of order 1/Re”, we obtain the following system:

oUu  dUy . oU  0Uy U 9
— W= —dn=U,
Yoox *ox 9z " oz a7z Y
ov v % y
-2 P = — 477V, .
UO()Y + Wy — ()Z + = BYZ 47V, (2.3)
ow ()WO oW (')W'Q . oP %W 2. OU oW
V=t —= W=+ — -7 — =0.
bogx tax Utz * oz 0z * 0 ox TV Tz =0
In deriving (2.3). we assumed that the main flow in region II corresponds to the Blasius boundary
layer :
1 1 1 VA
= Wy ==Wo(). Bo=0{==). Usy=f. Wo=—=nf - f). n=—,
Uy = Ul W= goWoln). 1= O(g5)- Uo=f" Wo=som(uf = ). n= .

where the function f is found from the boundary-value problem
"/ " =0. fO)=f0)=0. f(x)=1
We consider the solution of (2.3) in subregion II”. In this subregion, because of the simple form of
the main flow [U, = 1, W}, = Woo/(Re vVX), and Woo = (1/2) "121010 (nf" - f)] the equations of motion are
significantly simplified and acquire the following form:
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The initial conditions for X = 0 follow from (2.1):
Uu,zy=0, v0,2)=1, W(0,72)=-2rZ (2.5)

The boundary conditions for Z — 0 are unknown a priori and should be found by matching with the solution
in viscous subregion II'.

To find a solution of (2.4) satisfying (2.5), we assume that U = 0. Then, eliminating the pressure from
the second and third equations of (2.4) and using the continuity equation for expressing V' in terms of 1,
we obtain the equation for the vertical component of velocity:

OB Wy 0B _ O*B 2 PRl -

-t —= — = — — 47" B. B=—5 —4x°V.

ox T xoz o0z T ozz "
The solution of this equation satisfving (2.5) and the boundary condition on the wall W(X,0) = G(X)
specified by an arbitrary function G(X) has the form

W = G(X)e % — 27(Z — 2oV X )e™ '™ X, (2.6)
The necessity of satisfying conditions (2.5) imposes the limitation G(0) = 0 on the function G(.X), which

describes the displacing action of the boundary layer.
Having the expression for 117, we can easily obtain a solution for V and P in subregion II":

‘ . 1 dG Wooy _.
— -\ =22 —dx= X Y O 00\ —2xZ7 5
V= —G(X)e 22 y oY p ( == ——_X)e . 2.7)

We now find the solution at the initial section of subregion I'. The boundary conditions at its external
boundary follow from (2.6) and (2.7) and have the following form for X « 1:

ZIVX —0: U=0, Vo1, W= =21(1+G(X)Z+4xWpoVX. (2.8)
The solution for X < 1 in subregion IT' is sought in the form
U=2cXg'(n), V=0 W=2aVX[(n/2)g'(n) = (3/2)9() = (n)]. P=0(1/VX). (2.9)

where the functions g and [, which describe the profiles of perturbations of the streamwise and transverse
components of velocity, depend on the self-similar variable ) = Z/V/X. Substitution of expressions (2.9) into
the initial equations (2.3) and taking into account the terms of the least orders in X lead to boundary-value
problems for ordinary differential equations for [ and g:
" +(1/2)fl" =0, 1(0)y=1(0) =0, U'(c0) =1,
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9" +(1/2)f¢" - f'g +(3/2)f"g = —f"l.  9(0) = ¢'(0) = g(c0) = 0.

We can easily see that I(n) = f(n) and g(n) = (nf’ — f)/2 are solutions of these problems. The solution
obtained is illustrated in Fig. 2. which shows the profiles of perturbations of the streamwise « and transverse
v components of velocity normalized to  ieir maximum values.

The solution for inviscid subregion 1”7 contains an unknown function G(X), which describes the dis-
placing action of the boundary layer. Its form for X — 0 is obtained by comparing the expression for W
(2.8) with the asymptotic behavior of the solution for the vertical component of velocity in the boundary
layer (2.9): G(X) = —37WyvX + O(X) as X — 0.

3. Solution in the Main Part of Region II. We seek the numerical solution of the complete system
(2.3) for X = 1. These are equations of the parabolic type. and they require initial conditions in a certain
cross section X = Xy and boundary conditions on the wall and for Z — oc. For formulation of the boundary
conditions, we need a solution uniformly suitable in tertns of Z or a composite solution in the initial part of
region I1. It is found by a standard procedure [7] and coincides with (2.9) for U and V and has the following
form for W:

W(X, Z) = 2r AVX[(n/2)g'(n) = (3/2)9(n) — £(n) = (3/2)Woo(e™*™” — 1) — 37 W0 Z]. (3.1)

Since the complete system (2.3) is also valid in the inviscid part of the region considered, the bound-
ary conditions for it as Z — oc are taken as the corresponding limit of the solution of (2.6) and (2.7) in
subregion II”:

Z oo U(X.Z)—0. V(X.Z)—e ™Y, W(X.Z) = =21(Z — 2WooVX)e ™.

These boundary conditions. the no-slip conditions on the wall U(X,0) = V(X,0) = W(X,0) = 0, and the
initial conditions (2.9) for U and V and (3.1) for W in the cross section X = X form a complete statement
of the problem for system (2.3). Note that this system does not contain any parameters; hence, the solutions
of this problem U, V, W, and P are really universal functions of X and Z. and the form of the solution of
(2.2) may be interpreted as the law of similarity.

To solve system (2.3), we eliminate the pressure by adding the derivative with respect to Z in the
second equation with the third one multiplied by 472, In the resultant equation, we express the transverse
component of velocity V in terms of U and W using the continuity equation. We replace the arising term
Upd?U /0 X? containing the second derivative with respect to .X by the expression found from the first equation
of momentum differentiated with respect to X. As a result, we obtain the following equation for U and W:

B . 9B aU, o 10%U, Pvy .. g ,0Uy oU
= o 20 T (20w - - (22
Uo ox + Wo 0Z 09X B 0X ( BYA> ) 0X 072 02 ( X ax)
oWy 1 O*U ” Uy 9B o W o
_Serv Y 2r7Y — U=— —47x°B. B=-—— — 47V,

%0z )~ sxmaz V= o BYE W

This equation, the first equation of momentum, and the corresponding boundary and initial conditions
form the problem for U and W, which was solved numerically using the marching method. The derivatives
with respect to X were approximated by an implicit second-order difference scheme. The discretization of
the equations in terms of Z was performed by the method of collocations. and the boundary conditions for
Z =0 and Z — oo were satisfied by choosing appropriate basis functions.

4. Numerical Results and Analysis. To study the cffect of the position of the initial cross section
of the solution obtained, we calculated the evolution of perturbations for various values of Xg. It was found
that the solution depends on Xy for Xy > 10—, and only for X, decreasing to approximately 1075 do the
results become independent of Xy and remain constant with an error greater than 0.1%. The convergence of
the solution with decreasing Xp and the coincidence of the numerical solution with the analytical one (2.9)
for X < 1079 indicate that the formulation of the problem is not contradictory and evidence indirectly the
credibility of the numerical method used.
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The solution for U obtained for Xo < 1079 is plotted in Figs. 3 and 4. The results for the velocity
components V and W are of no interest, since they are negligibly small as compared to U for X ~ 1. The
solid curve in Fig. 3 shows the dependence of the maximum (in terms of Z) perturbation Unpax on X. For
X = 1073, velocity perturbations increase almost linearly in accordance with the solution for X « 1 (2.7) for
which the dependence of Up.x on X is shown by the dashed curve. The perturbations reach a maximum at
X ~ 0.02 and then decay. A similar behavior of perturbations generated by streamwise vortices was obtained
in [3, 4. '

The profiles of the streamwise component of velocity perturbations along the vertical coordinate for
X =107%, 0.02, and 0.08 are plotted in Fig. 4. For convenience of comparison of the profiles with each other
and with the experimental data of [6], they are plotted versus the coordinate n = Z/ VX. It is seen from
Fig. 4 that the maximum of velocity perturbations is gradually shifted away from the wall with distance from
the leading edge. The change in the shape of the profile up to the cross section X = 0.02 corresponding to the
maximumn perturbations over the length is comparatively small, but it becomes significant at large distances
from the leading edge where the perturbations decay. The profile of the low-frequency oscillations of velocity
(4} in the boundary layer in the case of an elevated level of free-stream turbulence, which was measured by
Westin et al. [6], almost coincides with the velocity profiles of growing perturbations for X = 107° and 0.02.
The profile of velocity perturbations coinciding with the experimental one was also obtained in calculation
of the evolution of perturbatious generated by streamwise vortices in {3, 4]. This circumstance allows us
to assume that the reason for increasing oscillations in the boundary layer may be both streamwise and
perpendicular to the leading-edge vortices in the free stream.

To clarify the dependence of the solution obtained on the main parameters, we rewrite the expression
for u (2.2) in the dimensional form:

uw=(2r/a) Rey n(t//N)U((&'/XN)?.'/N). (4.1)

Here &' = \//2 [ul, is the boundary-layer thickness at a distance 2’ from the leading edge and Rep = ul b’ /v,

It follows from Eq. (4.1) that the maximum value of perturbations in the boundary layer .y (with accuracy
to the logarithmic term) is independent of their transverse size X and is determined by the expression

Umax =~ (0.055/a) Rep, In ('/XN'). (1.2)

The distance z} .. at which the maximum of perturbations is reached is proportional to their period
squared:

! 0.02uL N2/ (4.3)

It also follows from (4.1) that the transverse period of perturbations X', which are amplified to the

greatest extent by a given cross section 2/, is proportional (with accuracy to the logarithmic term) to the
boundary-layer thickness in this cross section:

14 ! / !
N o = 7078 (1 4+ O(1/ In (b'/X7))). (4.4)
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The corollaries of the resultant solutions (4.3) and (4.4) correspond to the data of the experiment [6]
and theory {3, 4] on amplification of quasi-steady vortices in the boundary layer on a flat plate with a sharp
leading edge. In [6], the estimate of the period of the streaky structure has the form X =~ 9¢’, and in
[4] the perturbations amplified to the greatest extent have the period N ~ 13¢’, which differs from (4.4)
insignificant!v. An expression for the distance xj,,, similar to (4.3) is obtained from the results of [4].

Nevertheless, the conclusion that the maximum amplification of perturbations is independent of their
period [see (1.2)] is significantly different from the known results for the boundary layer on a flat plate
with a sharp leading edge. According to [4], we have upax ~ Re ~ X /2/. A similar conclusion may be
drawn from the experimental data of [6], if we take into account that the amplitude of velocity oscillations
is tn VRe, ~ (v x'/v')Y/? and their period is X' ~ &' ~ (v'2'/ul)"/2. The reason for this difference
is the additional amplification of perturbations on the blunted leading edge owing to the deformation of the
vorticity field in the flow past the leading edge. Indeed, in the case of interaction of flow nonuniformity with
the leading edge, a transverse velocity arises at the edge of the boundary layer. This velocity exceeds the
initial amplitude of nonuniformity by A = ('/N)In (¥ /X\') times. As a result, a perturbation with transverse
and vertical components of velocity appears at the initial section of the boundary layer and above it. As
is shown by Andersson et al. [4], the development of this kind of perturbations leads to their subsequent
transformation into perturbations containing only the streamwise component of velocity, and the amplitude
of the latter increases to a value which is greater than the initial one by Re times. A similar process of
disturbance evolution in the boundary layer is described by the numerical solution in region II obtained in
the present work. The product of the disturbance-amplification factors in the flow past the leading edge A
and in the boundary layer Re vields the total amplification by RepIn ('/)’) times in accordance with (4.2).
Since the amplification of perturbations at the leading edge is inversely proportional to their period and that
in the boundary layer is directly proportional to the period, the total amplification is independent of the
magnitude of perturbations. )

The results obtained allow one to predict the special features of the laminar—turbulent transition on
bodies with a blunted leading edgé in the case of an elevated level of free-streamn turbulence. The amplitude
of oscillations in the boundary laver on such bodies should be almost constant over their length, but their
transverse size, as on a flat plate with a sharp leading edge, should increase with distance from the leading
edge. This character of disturbance evolution allows us to assume that flow turbulization on blunted bodies
occurs either in the immediate vicinity of the leading edge or, if the level of flow turbulence is not sufficiently
large, very far from the leading edge due to other mechanisms of disturbance growth. The amplification
factor of vortex perturbations on blunted bodies is greater than on a flat plate with a sharp leading edge by
a factor of /) or Rep/+/Re,. and the transition on them should occur at lower free-stream turbulence than
in experiments such as in [6]. Since the elements of constructions of flving vehicles (turbine blades, wings,
fins) have generally blunted leading edges, this conclusion is important for determining the position of the
laminar-turbulent transition in practice. For examnple, the amplification factor on a wing of a cargo plane
with a leading-edge bluntness of ¥ ~'0.1 m and a flight velocity of u, & 200 m/sec is roughly equal to
10° in accordance with (4.2), and the laminar-turbulent transition should be observed for an amplitude of
nonuniformity of the flow profile of ¢ &~ 1076, Though the fraction of perturbations of the type of transverse
nonuniformity of the velocity profile in an actual turbulent flow is unknown, we may assume that their
characteristic amplitude ¢ varies between 0.1 and 0.01 of the turbulence level ¢i. Hence. the transition on
the wing should occur at a level of turbulence sy & 0.01-0.001%, which is lower than in a low-turbulent wind
tunnel and, possibly, corresponds to actual flight conditions.
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